Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.531
Filtrar
1.
J Tradit Chin Med ; 44(2): 334-344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504539

RESUMO

OBJECTIVE: To explore the mechanism of Dangua Fang (, DGR) in multi-target and multi-method regulation of glycolipid metabolism based on phosphoproteomics. METHODS: Sprague-Dawley rats with normal glucose levels were randomly divided into three groups, including a conventional diet control group (Group A), high-fat-high-sugar diet model group (Group B), and DGR group (Group C, high-fat-high-sugar diet containing 20.5 g DGR). After 10 weeks of intervention, the fasting blood glucose (FBG), 2 h blood glucose [PBG; using the oral glucose tolerance test (OGTT)], hemoglobin A1c (HbA1c), plasma total cholesterol (TC), and triglycerides (TG) were tested, and the livers of rats were removed to calculate the liver index. Then, hepatic portal TG were tested using the Gross permanent optimization-participatiory action planning enzymatic method and phosphoproteomics was performed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis followed by database search and bioinformatics analysis. Finally, cell experiments were used to verify the results of phosphoproteomics. Phosphorylated mitogen-activated protein kinase kinase kinase kinase 4 (MAP4k4) and phosphorylated adducin 1 (ADD1) were detected using western blotting. RESULTS: DGR effectively reduced PBG, TG, and the liver index (P < 0.05), and significantly decreased HbA1c, TC, and hepatic portal TG (P < 0.01), showed significant hematoxylin and eosin (HE) staining, red oil O staining, and Masson staining of liver tissue. The total spectrum was 805 334, matched spectrum was 260 471, accounting for accounting 32.3%, peptides were 19 995, modified peptides were 14 671, identified proteins were 4601, quantifiable proteins were 4417, identified sites were 15 749, and quantified sites were 14659. Based on the threshold of expression fold change ( > 1.2), DGR up-regulated the modification of 228 phosphorylation sites involving 204 corresponding function proteins, and down-regulated the modification of 358 phosphorylation sites involving 358 corresponding function proteins, which included correcting 75 phosphorylation sites involving 64 corresponding function proteins relating to glycolipid metabolism. Therefore, DGR improved biological tissue processes, including information storage and processing, cellular processes and signaling, and metabolism. The metabolic functions regulated by DGR mainly include energy production and conversion, carbohydrate transport and metabolism, lipid transport and metabolism, inorganic ion transport and metabolism, secondary metabolite biosynthesis, transport, and catabolism. In vitro phosphorylation validation based on cell experiments showed that the change trends in the phosphorylation level of MAP4k4 and ADD1 were consistent with that of previous phosphoproteomics studies. CONCLUSION: DGR extensively corrects the modification of phosphorylation sites to improve corresponding glycolipid metabolism-related protein expression in rats with glycolipid metabolism disorders, thereby regulating glycolipid metabolism through a multi-target and multi-method process.


Assuntos
Glicemia , Espectrometria de Massas em Tandem , Ratos , Animais , Ratos Sprague-Dawley , Glicemia/metabolismo , Hemoglobinas Glicadas , Cromatografia Líquida , Fígado , Metabolismo dos Lipídeos , Glicolipídeos/metabolismo , Glicolipídeos/farmacologia , Triglicerídeos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Dieta Hiperlipídica
2.
ACS Chem Biol ; 19(3): 707-717, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442242

RESUMO

Surface lipids on pathogenic mycobacteria modulate infection outcomes by regulating host immune responses. Phenolic glycolipid (PGL) is a host-modulating surface lipid that varies among clinical Mycobacterium tuberculosis strains. PGL is also found in Mycobacterium marinum, where it promotes infection of zebrafish through effects on the innate immune system. Given the important role this lipid plays in the host-pathogen relationship, tools for profiling its abundance, spatial distribution, and dynamics are needed. Here, we report a strategy for imaging PGL in live mycobacteria using bioorthogonal metabolic labeling. We functionalized the PGL precursor p-hydroxybenzoic acid (pHB) with an azide group (3-azido pHB). When fed to mycobacteria, 3-azido pHB was incorporated into the cell surface, which could then be visualized via the bioorthogonal conjugation of a fluorescent probe. We confirmed that 3-azido pHB incorporates into PGL using mass spectrometry methods and demonstrated selectivity for PGL-producing M. marinum and M. tuberculosis strains. Finally, we applied this metabolic labeling strategy to study the dynamics of PGL within the mycobacterial membrane. This new tool enables visualization of PGL that may facilitate studies of mycobacterial pathogenesis.


Assuntos
Mycobacterium marinum , Mycobacterium tuberculosis , Animais , Glicolipídeos/metabolismo , Fatores de Virulência/metabolismo , Peixe-Zebra , Mycobacterium tuberculosis/metabolismo , Mycobacterium marinum/metabolismo
3.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454851

RESUMO

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Assuntos
Colostro , Glicoproteínas , Leite , Feminino , Gravidez , Lactente , Humanos , Animais , Colostro/metabolismo , Perilipina-2/metabolismo , Leite/metabolismo , Glicolipídeos/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas do Leite/metabolismo , Caseínas/metabolismo
4.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357925

RESUMO

NKT cells recognize glycolipids presented by CD1d-expressing antigen-presenting cells (APCs) and include type I NKT cells with antitumor function and type II NKT cells, which have been reported to suppress the antitumor response. Some type II NKT cells recognize sulfatide, a glycosphingolipid with a sulfate modification of the sugar. Type I NKT cells recognize different glycosphingolipids. In this issue of the JCI, Nishio and colleagues showed that APCs could process sulfatide antigens, analogous to protein processing for peptide-reactive T cells. Antigen processing in lysosomes removed sulfate to generate a glycosphingolipid that stimulated type I NKT cells and thereby turned an antigen with no antitumor activity into one that not only stimulated type I NKT cells but also stimulated antitumor responses. These findings may extend to the development of glycolipid antigens that could stimulate anticancer responses via antigen processing by APCs.


Assuntos
Células T Matadoras Naturais , Sulfoglicoesfingolipídeos/metabolismo , Antígenos CD1d , Glicolipídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Sulfatos/metabolismo
5.
J Agric Food Chem ; 72(6): 3210-3217, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291649

RESUMO

This study aimed to explore the differences in milk fat globule membrane (MFGM) proteins between human milk (HM) and porcine milk (PM) using a label-free quantitative proteomic approach. A total of 3920 and 4001 MFGM proteins were identified between PM and HM, respectively. Among them, 3520 common MFGM proteins were detected, including 956 significant differentially expressed MFGM proteins (DEPs). Gene ontology (GO) enrichment analysis showed that the DEPs were highly enriched in the lipid metabolic process and intrinsic component of membrane. Kyoto Encyclopedia of Genes and Genomes pathways suggested that protein processing in the endoplasmic reticulum was the most highly enriched pathway, followed by peroxisome, complement, and coagulation cascades. This study reflects the difference in the composition of MFGM proteins between HM and PM and provides a scientific and systematic reference for the development of MFGM protein nutrition.


Assuntos
Glicoproteínas , Proteínas de Membrana , Proteômica , Humanos , Animais , Suínos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Leite/metabolismo , Glicolipídeos/metabolismo , Leite Humano/metabolismo , Gotículas Lipídicas/metabolismo
6.
Ecotoxicol Environ Saf ; 271: 115963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232526

RESUMO

As a fungicide with the characteristics of high effectiveness, internal absorption and broad spectrum, imazalil is widely used to prevent and treat in fruits and vegetables. Here, pregnant C57BL/6 mice were exposed to imazalil at dietary levels of 0, 0.025‰, and 0.25‰ through drinking water during pregnancy and lactation. We then analyzed the phenotype, metabolome, and expression of related genes and proteins in the livers of mice. There was a marked decrease in the body and liver weights of male offspring mice after maternal imazalil exposure, while this effect on the dam and female offspring was slight. Metabolomics analyses revealed that imazalil significantly altered the metabolite composition of liver samples from both dams and offspring. The preliminary results of the analysis indicated that glucolipid metabolism was the pathway most significantly affected by imazalil. We performed a coabundance association analysis of metabolites with significant changes in the pathway of glycolipid metabolism, and IMZ altered the networks of both dams and offspring compared with the network in control mice, especially in male offspring. The hepatic triglyceride, non-esterified fatty acid and glucose levels were increased significantly in the dams but decreased significantly in male offspring after maternal imazalil exposure. Furthermore, the expression levels of genes associated with glycolipid metabolism and m6A RNA methylation were significantly affected by maternal intake of imazalil. Imazalil-induced glucolipid metabolism disturbance was highly correlated with m6A RNA methylation. In conclusion, maternal imazalil exposure resulted in glucolipid metabolism disturbance and abnormal m6A RNA methylation in the livers of dams and offspring mice. We expected that the information acquired in this study will provide novel evidence for understanding the effect of maternal imazalil exposure on potential health risks.


Assuntos
Imidazóis , Fígado , 60697 , Gravidez , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Glicolipídeos/metabolismo
7.
J Microbiol Biotechnol ; 34(2): 476-483, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37942550

RESUMO

Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1ß, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.


Assuntos
NF-kappa B , Urocordados , Animais , Camundongos , NF-kappa B/metabolismo , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfolipídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Células RAW 264.7
8.
Environ Sci Pollut Res Int ; 31(4): 5500-5512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123780

RESUMO

Carbendazim (CBZ) and prochloraz (PCZ) are broad-spectrum fungicides used in agricultural peat control. Both fungicides leave large amounts of residues in fruits and are toxic to non-target organisms. However, the combined toxicity of the fungicides to non-target organisms is still unknown. Therefore, we characterized the toxic effects of dietary supplementation with CBZ, PCZ, and their combination for 90 days in 6-week-old male Institute of Cancer Research (ICR) mice. CBZ-H (100 mg/kg day), PCZ-H (10 mg/kg day), and their combination treatments increased the relative liver weights and caused liver injury. The serum total cholesterol (TC), triglyceride (TG), glucose (Glu), pyruvate (PYR), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were reduced, and synergistic toxicity was observed. Hepatic transcriptome revealed that 326 differentially expressed genes (DEGs) of liver were observed in the CBZ treatment group, 149 DEGs in the PCZ treatment group, and 272 DEGs in the combination treatment group. According to KEGG enrichment analysis, the fungicides and their combination affected lipid metabolism, amino acid metabolism, and ferroptosis. In addition, the relative mRNA levels of key genes involved in lipid metabolism were also examined. Compared with individual exposure, combined exposure to CBZ and PCZ caused a more obvious decrease in the expression of some genes related to glycolipid metabolism. Furthermore, the relative mRNA levels of some key genes in the combination treatment group were lower than those in the CBZ and PCZ treated groups. In summary, CBZ, PCZ, and their combination generally caused hepatotoxicity and glycolipid metabolism disorders, which could provide new insights for investigating the combined toxicity of multiple fungicides to animals.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Imidazóis , Camundongos , Masculino , Animais , Fungicidas Industriais/farmacologia , Fígado , Perfilação da Expressão Gênica , LDL-Colesterol/metabolismo , Glicolipídeos/metabolismo , RNA Mensageiro/metabolismo
9.
Bioresour Technol ; 394: 130220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109979

RESUMO

Pseudomonas putida KT2440, a GRAS strain, has been used for synthesizing bulk and fine chemicals. However, the gene editing tool to metabolically engineer KT2440 showed low efficiency. In this study, a novel sacB-based system pK51mobsacB was established to improve the efficiency for marker-free gene disruption. Then the rhamnolipid synthetic pathway was introduced in KT2440 and genes of the competitive pathways were deleted to lower the metabolic burden based on pK51mobsacB. A series of endogenous and synthetic promoters were used for fine tuning rhlAB expression. The limited supply of dTDP-L-rhamnose was enhanced by heterologous rmlBDAC expression. Cell growth and rhamnolipid production were well balanced by using glucose/glycerol as mixed carbon sources. The final strain produced 3.64 g/L at shake-flask and 19.77 g/L rhamnolipid in a 5 L fermenter, the highest obtained among metabolically engineered KT2440, which implied the potential of KT2440 as a promising microbial cell factory for industrial rhamnolipid production.


Assuntos
Carbono , Pseudomonas putida , Carbono/metabolismo , Glicolipídeos/metabolismo , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
10.
J Agric Food Chem ; 71(50): 20118-20130, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061326

RESUMO

In this study, the coding region of rainbow trout fgf21 was cloned and sequenced to synthesize a recombinant protein (rFGF21) and investigate its potential role in improving glycolipid metabolism. Acute injection of rFGF21 into rainbow trout effectively reduced serum glucose levels. To investigate the effect of rFGF21 on high-carbohydrate diet (HCD)-induced metabolic disorders in rainbow trout, a 31-day feeding experiment was conducted. At the end of the third week, fish were injected with either PBS or rFGF21. The results showed that the final body weight (FBW) significantly increased in rainbow trout on an HCD (P < 0.05), but there were potential risks including disturbances in glycolipid metabolism and increased inflammatory responses. However, these effects were altered by rFGF21 treatment. In addition, rFGF21 promotes glucose uptake by increasing the phosphorylation levels of AKT (protein kinase B) and GSK3ß (glycogen synthase kinase 3ß), increasing hepatic glycogen, thereby lowering serum glucose. Notably, the rFGF21 did not exacerbate the inflammatory response but downregulated the expression of inflammatory factors. Interestingly, the activation of autophagy and the AMPK pathway may contribute to the positive effect of rFGF21, where rFGF21 injection significantly increased the levels of LC3I/II protein and phosphorylate AMPKα (P < 0.05).


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Dieta , Glucose/metabolismo , Carboidratos/farmacologia , Glicolipídeos/metabolismo , Fígado/metabolismo
11.
Nutrients ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068746

RESUMO

Camellia seed oil (CO) is used as edible oil in southern China because of its excellent fatty acid composition and abundant bioactive compounds. Chronic kidney disease (CKD) is one of the most common chronic degenerative diseases in China, and active compounds in vegetable oil, like virgin olive oil, have been demonstrated to be efficacious in the management of CKD. In this study, virgin CO was refined using a standard process. The refining had minimal impact on the fatty acid composition, but significantly reduced the presence of bioactive compounds like polyphenols in CO. Sprague-Dawley (SD) rats fed with high fat diet (Group G) were treated with either virgin (Group Z) or refined CO (Group R). The oral administration of CO alleviated lipid accumulation and decreased body and kidney weight gain. Furthermore, treatment with virgin CO increased the renal ATP content. The renal expression levels of AMPK and key enzymes involved in fatty acid oxidation (CPT-1 and ACOX1) and glycolysis (HK, PFK, PK and GAPDH) were up-regulated in Group Z, thereby enhancing the ATP production. Virgin CO treatment downregulated the expression level of SREBP2 and its downstream target genes, such as ACC, FAS, and HMGCR, which reduced lipid synthesis. These findings indicate that virgin CO improves glycolipid metabolism and restores energy homeostasis in the kidneys of rats fed with a high-fat diet by modulating the AMPK-SREBP-signaling pathway, suggesting the potential of active compounds in virgin CO for managing the renal failure associated with glycolipid dysmetabolism.


Assuntos
Camellia , Insuficiência Renal Crônica , Ratos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos Sprague-Dawley , Óleos de Plantas/farmacologia , Óleos de Plantas/metabolismo , Azeite de Oliva/metabolismo , Metabolismo dos Lipídeos , Rim/metabolismo , Ácidos Graxos/metabolismo , Insuficiência Renal Crônica/metabolismo , Glicolipídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Fígado/metabolismo
12.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38070879

RESUMO

YnbB is a paralogue of CdsA, a CDP-diacylglycerol synthase. While the cdsA gene is essential, the ynbB gene is dispensable. So far, no phenotype of ynbB knockout has been observed. We found that a ynbB knockout strain acquired cold-sensitivity on growth under CdsA-limited conditions. We found that MPIase, a glycolipid involved in protein export, is cold-upregulated to facilitate protein export in the cold, by increasing the mRNA levels of not only CdsA but also that of YnbB. Under non-permissive conditions, phospholipid biosynthesis proceeded normally, however, MPIase upregulation was inhibited with accumulation of precursors of membrane and secretory proteins such as M13 procoat and proOmpA, indicating that YnbB is dedicated to MPIase biosynthesis, complementing the CdsA function.


Assuntos
Diacilglicerol Colinofosfotransferase , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Diglicerídeos de Citidina Difosfato , Regulação para Cima , Glicolipídeos/metabolismo
13.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947642

RESUMO

Tightly regulated and highly adaptive lipid metabolic and transport pathways are critical to maintaining brain cellular lipid homeostasis and responding to lipid and inflammatory stress to preserve brain function and health. Deficits in the lipid handling genes APOE and GBA1 are the most significant genetic risk factors for Lewy body dementia and related dementia syndromes. Parkinson's disease patients who carry both APOE4 and GBA1 variants have accelerated cognitive decline compared to single variant carriers. To investigate functional interactions between brain ApoE and GBA1, in vivo GBA1 inhibition was tested in WT versus ApoE-deficient mice. The experiments demonstrated glycolipid stress caused by GBA1 inhibition in WT mice induced ApoE expression in several brain regions associated with movement and dementia disorders. The absence of ApoE in ApoE-KO mice amplified complement C1q elevations, reactive microgliosis and astrocytosis after glycolipid stress. Mechanistically, GBA1 inhibition triggered increases in cell surface and intracellular lipid transporters ABCA1 and NPC1, respectively. Interestingly, the absence of NPC1 in mice also triggered elevations of brain ApoE levels. These new data show that brain ApoE, GBA1 and NPC1 functions are interconnected in vivo, and that the removal or reduction of ApoE would likely be detrimental to brain function. These results provide important insights into brain ApoE adaptive responses to increased lipid loads.


Assuntos
Encéfalo , Glucosilceramidase , Humanos , Camundongos , Animais , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Encéfalo/metabolismo , Lisossomos/metabolismo , Apolipoproteínas E , Glicolipídeos/metabolismo
14.
ACS Appl Bio Mater ; 6(12): 5555-5562, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38015441

RESUMO

Lipidic adjuvant formulations consisting of immunomodulatory mycobacterial cell wall lipids interact with host cells following administration. The impact of this cross-talk on the host membrane's structure and function is rarely given enough consideration but is imperative to rule out nonspecific perturbation underlying the adjuvant. In this work, we investigated changes in the plasma membranes of live mammalian cells after exposure to mycobacterial mycolic acid (MA) and phenolic glycolipids, two strong candidates for lipidic adjuvant therapy. We found that phenolic glycolipid 1 softened the plasma membrane, lowering membrane tension and stiffness, but MA did not significantly change the membrane characteristics. Further, phenolic glycolipid 1 had a fluidizing impact on the host plasma membrane, increasing the fluidity and the abundance of fluid-ordered-disordered coexisting lipid domains. Notably, lipid diffusion was not impacted. Overall, MA and, to a lesser extent, phenolic glycolipid 1, due to minor disruption of host cell membranes, may serve as appropriate lipids in adjuvant formulations.


Assuntos
Glicolipídeos , Ácidos Micólicos , Animais , Glicolipídeos/análise , Glicolipídeos/química , Glicolipídeos/metabolismo , Ácidos Micólicos/análise , Ácidos Micólicos/química , Ácidos Micólicos/metabolismo , Membrana Celular/química , Parede Celular , Adjuvantes Imunológicos , Macrófagos/metabolismo , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894852

RESUMO

Vascular endothelial growth factor A (VEGFA) plays important roles in angiogenesis, inflammatory response as well as energy metabolism in mammals. However, its effect on glycolipid metabolism in fish has not been reported. In this study, we cloned and characterized the vegfa gene of Schizothorax prenanti (S. prenanti). vegfa expression was significantly higher in liver and muscle than that in other tissues. Then, the VEGFA recombinant protein was expressed in Escherichia coli and obtained after purification. VEGFA i.p. injection significantly increased the serum glucose and TG content compared with the control group. Moreover, VEGFA protein aggravated the glycogen and lipid deposition in the liver of S. prenanti. In addition, we found that VEGFA treatment increased hepatocyte glycogen and lipid droplet content and increased the levels of pAMPKα (T172). Furthermore, AMPKα inhibition attenuated the ability of VEGFA to induce TG and glycogen accumulation. These results demonstrate that VEGFA regulates hepatic lipid and glycogen metabolism through AMPKα in S. prenanti, which may contribute to a better understanding of VEGFA functions in the glycolipid metabolism of fish.


Assuntos
Cyprinidae , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Lipídeos , Glicolipídeos/metabolismo , Mamíferos/metabolismo
16.
J Agric Food Chem ; 71(42): 15656-15667, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847053

RESUMO

Obesity and its associated conditions, such as nonalcoholic fatty liver disease (NAFLD), are risk factors for health. The aim of this study was to explore the effects of glutamine (Gln) on liver steatosis induced by a high-fat diet (HFD) and HEPG2 cells induced by oleic acid. Gln demonstrated a positive influence on hepatic homeostasis by suppressing acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS) and promoting sirtuin 1 (SIRT1) expression while improving glucose metabolism by regulating serine/threonine protein kinase (AKT)/factor forkhead box O1 (FOXO1) signals in vivo and in vitro. Obese Gln-fed mice had higher colonic short-chain fatty acid (SCFA) contents and lower inflammation factor protein levels in the liver, HEPG2 cells, and jejunum. Gln-treated obese mice had an effective decrease in Firmicutes abundance. These findings indicate that Gln serves as a nutritional tool in managing obesity and related disorders.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Camundongos Obesos , Glutamina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Obesidade/etiologia , Obesidade/genética , Glicolipídeos/metabolismo , Camundongos Endogâmicos C57BL
17.
Biochimie ; 215: 4-11, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802210

RESUMO

Fat is an important component of milk which delivers energy, nutrients, and bioactive molecules from the lactating mother to the suckling neonate. Milk fat consists of a complex mixture of different types of lipids; hundreds of fatty acids, triglycerides, phospholipids, sphingolipids, cholesterol and cholesteryl ester, and glycoconjugates, secreted by the mammary gland epithelial cells (MEC) in the form of a lipid-protein assembly termed the milk fat globule (MFG). The mammary gland in general, and specifically that of modern dairy cows, faces metabolic stress once lactation commences, which changes the lipogenic capacity of MECs directly by reducing available energy and reducing factors required for both lipid synthesis and secretion or indirectly by activating a proinflammatory response. Both processes have the capacity to change the morphometric features (e.g., number and size) of the secreted MFG and its precursor-the intracellular lipid droplet (LD). The MFG size is tightly associated with its lipidome and proteome and also affects the bioavailability of milk fat and protein. Thus, MFG size has the potential to regulate the bioactivity of milk and dairy products. MFG size also plays a central role in the functional properties of milk and dairy products such as texture and stability. To understand how stress affects the structure-function of the MFG, we cover: (i) The mechanism of production and secretion of the MFG and the implications of MFG size, (ii) How the response mechanisms to stress can change the morphometric features of MFGs, and (iii) The possible consequences of such modifications.


Assuntos
Lactação , Gotículas Lipídicas , Animais , Feminino , Bovinos , Gotículas Lipídicas/metabolismo , Glicolipídeos/metabolismo , Homeostase , Proteínas do Leite/metabolismo
18.
Bioresour Technol ; 388: 129719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678650

RESUMO

Sophorolipids (SLs) represent highly promising biosurfactants. However, its widespread production and application encounter obstacles due to the significant costs involved. Here, an intelligent and precise regulation strategy was elucidated for the fermentation process coupled with in-situ separation production mode, to achieve cost-effective SLs production. Firstly, a mechanism-assisted data-driven model was constructed for "on-demand feeding of cells". Moreover, a strategy of step-wise oxygen supply regulation based on the demand for cell metabolic capacity was developed, which accomplished "on-demand oxygen supply of cells", to optimize the control of energy consumption. Finally, a systematic approach was implemented by integrating a semi-continuous fermentation mode with in-situ separation technology for SLs production. This strategy enhanced SLs productivity and yield, reaching 2.30 g/L/h and 0.57 g/g, respectively. These values represented a 40.2% and 18.7% increase compared to fed-batch fermentation. Moreover, the concentration of crude SLs after separation reached 793.12 g/L, facilitating downstream separation and purification processes.


Assuntos
Ácidos Oleicos , Oxigênio , Fermentação , Ácidos Oleicos/metabolismo , Glicolipídeos/metabolismo
19.
J Immunol ; 211(9): 1385-1396, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695687

RESUMO

Mycobacterium tuberculosis cell-wall glycolipids such as mannosylated lipoarabinomannan (ManLAM) can inhibit murine CD4+ T cells by blocking TCR signaling. This results in suppression of IL-2 production, reduced T cell proliferation, and induction of CD4+ T cell anergy. This study extended these findings to the interaction between primary human CD4+ T cells and macrophages infected by mycobacteria. Exposure of human CD4+ T cells to ManLAM before activation resulted in loss of polyfunctionality, as measured by IL-2, IFN-γ, and TNF-α expression, and reduced CD25 expression. This was not associated with upregulation of inhibitory receptors CTLA-4, PD-1, TIM-3, and Lag-3. By confocal microscopy and imaging flow cytometry, ManLAM exposure reduced conjugate formation between macrophages and CD4+ T cells. ManLAM colocalized to the immunological synapse (IS) and reduced translocation of lymphocyte-specific protein tyrosine kinase (LCK) to the IS. When CD4+ T cells and Mycobacterium bovis BCG-infected monocytes were cocultured, ManLAM colocalized to CD4+ T cells, which formed fewer conjugates with infected monocytes. These results demonstrate that mycobacterial cell-wall glycolipids such as ManLAM can traffic from infected macrophages to disrupt productive IS formation and inhibit CD4+ T cell activation, contributing to immune evasion by M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Linfócitos T CD4-Positivos , Glicolipídeos/metabolismo , Sinapses Imunológicas , Interleucina-2/metabolismo , Macrófagos/microbiologia
20.
J Neural Transm (Vienna) ; 130(10): 1291-1302, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418038

RESUMO

Although depressive symptoms are common in PD, few studies investigated sex and age differences in depressive symptoms. Our study aimed to explore the sex and age differences in the clinical correlates of depressive symptoms in patients with PD. 210 PD patients aged 50-80 were recruited. Levels of glucose and lipid profiles were measured. The Hamilton Depression Rating Scale-17 (HAMD-17), the Montreal Cognitive Assessment (MoCA) and the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) assessed depressive symptom, cognition and motor function, respectively. Male depressive PD participants had higher fasting plasma glucose (FPG) levels. Regarding the 50-59 years group, depressive patients had higher TG levels. Moreover, there were sex and age differences in the factors associated with severity of depressive symptoms. In male PD patients, FPG was an independent contributor to HAMD-17 (Beta = 0.412, t = 4.118, p < 0.001), and UPDRS-III score was still associated with HAMD-17 in female patients after controlling for confounding factors (Beta = 0.304, t = 2.961, p = 0.004). Regarding the different age groups, UPDRS-III (Beta = 0.426, t = 2.986, p = 0.005) and TG (Beta = 0.366, t = 2.561, p = 0.015) were independent contributors to HAMD-17 in PD patients aged 50-59. Furthermore, non-depressive PD patients demonstrated better performance with respect to visuospatial/executive function among the 70-80 years group. These findings suggest that sex and age are crucial non-specific factors to consider when assessing the relationship between glycolipid metabolism, PD-specific factors and depression.


Assuntos
Envelhecimento , Glicemia , Depressão , Metabolismo dos Lipídeos , Doença de Parkinson , Caracteres Sexuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/sangue , Envelhecimento/metabolismo , Glicemia/metabolismo , Depressão/sangue , Depressão/diagnóstico , Depressão/epidemiologia , Depressão/psicologia , Glicolipídeos/sangue , Glicolipídeos/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/epidemiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia , Prevalência , Fatores de Risco , Disfunção Cognitiva/sangue , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/metabolismo , Estudos Transversais , Idoso , Idoso de 80 Anos ou mais , Distribuição por Idade , Cognição , Triglicerídeos/sangue , LDL-Colesterol/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...